Optimization of conjunctive water supply and reuse systems with distributed treatment for high-growth water-scarce regions

University of Arizona

July 17, 2013

Participants & Partners

PIs (UA)

Kevin Lansey (Civil Eng.) Robert Arnold (Environ. Eng.) Guzin Bayraksan (Systems – Ohio St.) Chris Choi (Ag and Bio – U. of Wisc.) Christopher Scott (Public Policy)

UA

*Doosun Kang (Post-Doc) *Majed Akhter Alex Andrade Christopher Bailey *Anne Campbell Ronson Chee Fei Du Alicia Forrester Medhanie Hagos Rebeca Hernandez-Reyes Christopher Horstman Luis Huizar

- *Moved on to other endeavors
- Also, we have had several undergrauate students.

Hwee Hwang Donghwi Jung *Brian Keller Fujun Lan David Love *Elisabeth Lynn Mario Mondaca *Kerri Jean Ormerod *Pierre Peguy *Pedro Romero Gwen Woods Weini Zhang *Baoyu Zhuang

Tucson Water

*Ralph Marra **Daniel Quintanar** Dean Trammel Wally Wilson **Pima County Regional** Wastewater Reclamation Department Manabendra Changakoti Edward Curley **Greg Hitt** Malcolm Pirnie, the Water **Division of ARCADIS** Steve Davis **David Eberle** Jeremy Smith

Partners

Pima County Department of Wastewater Management

Three Planning/Design Scales

Is water reclamation the next bucket? NAE grand challenge: "Combined neighborhood" of urban water and wastewater systems

Decentralized/satellite treatment -Where and how to treat?

Dual distribution systems -How to distribute and for what uses?

Infrastructure Planning

Planning/Design Objectives

Can we design a fully integrated complex system? Can decision makers understand the process and be capable of making informed judgments?

> EFRI RESIN 74e Maineraity of Arizona

SRR for W/WW System

« (Infrastructure) Sustainability

- Design and operate system with least impact in terms of TBL costs
 - ✓ Economic cost
 - ✓ Environmental cost (GHG)
 - \checkmark Social and Institutional cost

Resilience

• System adaptation and recovery when a failure occurs

THE UNIVERSITY OF ARIZONA.

Robustness

- Consistent functionality under external forces
- Evolve over time as supply and demand develop

Robustness

The robustness of a system to a given class of disturbances is defined as the ability to <u>maintain</u> its function when it is subject to a set of disturbances of this class

Resilience

Infrastructure resilience is the ability to gracefully degrade and subsequently <u>recover</u> from a potentially <u>catastrophic disturbance</u> that is internal or external in origin

General and Specified Resilience

Time

General: Low likelihood severe events Specified: Higher frequency, less severe failure events Scholz (2011) – Risk analysis literature

General and Specified Resilience

Time

General: Low likelihood severe events Specified: Higher frequency, less severe failure events Scholz (2011) – Risk analysis literature

		Study Period				
Functionality		05		Jurce		
		$\frac{S_t}{D_t}$		$\frac{W_t}{R_t}$		
Robustness						
Availability						
	7	$\frac{\sum_{t=T_0}^T Y_t}{T - T_0 + 1} =$	MTB	$\frac{MTBF}{F + MTTR}$		
Reliability		$e^{-\lambda L}$,	$\lambda = 1$	/MTBF		
Sustainability						
Sustainability						
	$\frac{\Sigma}{\Sigma}$	$\frac{\sum_{t=T_0}^{T} S_{i,t}}{\sum_{t=T_0}^{T} D_{i,t}}$		$\frac{X_{j,t}}{W_{ij,t}}$		

	Resilience
Max Event Volumetric Severity	$\max_{T_{0 < t < T}} 1 - \frac{\int_{t_{f,0}}^{t_f} [1 - f(t)] dt}{(t_f - t_{f,0})}$
Volumetric Severity	$1 - \frac{\int_{T_0}^T [1 - f(t)] dt}{(T - T_0)}$
Severity	$\min_{T_0 \le t \le T} [f]$
Repair Rate	$\mu = \frac{1}{MTTR}$
Maintainability	$1 - e^{-\mu L}$

Reservoir Supplied Community Characteristics

- Demand
 - Municipal demand 11,000 AFy increasing by 125 Afy per yr
 - Agriculture demand 6,000 AFy
 - Downstream demand 2,000 AFy
- Supply
- Avg. inflow 20,000 AFy
- Stand. Dev. 6,000 AFy
- Reservoir capacity 20,000 AF
- Reclaimed water
 - BASE case (2,000 AFy for downstream environmental demand)
 - RW case (4,000 AFy)

Typical flow sequences – base case

Change in sustainability over time

Severity for Multiple Realizations

MTTR Base Case

MTTR – With Reclaimed Water Facility

Adaptability/Evolvability

- Systems are not static
- Infrastructure systems adapt:
 - To applied stresses change operations or usage patterns
 - To failure conditions in responding to failure through resource allocation and speed of response

- Systems evolve over time:
 - To user demands
 - To availability of supplies

Scenario-based Robust Optimization of Regional W/WW Infrastructure

Regret costs

- Cost of having imperfect information about the future
- Total of overpayment and supplementary costs
 - Overpayment cost: when initially a larger system is constructed than is necessary

THE UNIVERSITY OF ARIZONA.

Supplementary cost: explicit cost of expanding initially undersized system

Scenario-based Multiple Objective Robust Optimization (SMORO)

- For the purpose of minimizing regret costs over multiple scenarios
- Two objectives are imposed
 - ✓ Objective 1 minimize the expected cost
 - ✓ Objective 2 minimize the cost variance across scenarios

Uncertainty/Scenario

Scenario Planning

THE UNIVERSITY OF ARIZONA.

EFRI RESIN

- Best fits to dynamic planning environments
- Consider uncertainties and unknowns particularly nonquantifiable and highly variable
- Maximize flexibility and minimize regret costs
- Maximize system adaptability to change

→ PLANNING ROBUSTNESS

Needs to be revised to reflect time varying uncertainties

Scenario Planning Process (The Art of the Long View: Planning for the Future in an Uncertain World, Peter Schwartz)

Find common elements

EFRI RESIN

HAMP Area Application

EFRI RESIN

Methodology

- Optimization Algorithm Genetic algorithm
- Decisions
 - Potable transmission pipe sizes
 - Reclaimed transmission pipe sizes
 - Satellite WWTPs capacities (1 MGD increment)
 - Centralized WWTP expansion capacity (5 MGD increment)
 - Recharge/recovery facility capacity
- Construction and O&M costs (w/ 3% discount rate)

Design Steps

Step 0 Developing Scenarios

Solve a set of single scenario problems

Step II

Identify common elements

Multi-period single-scenario optimization (MPSSO) model

Step III Determine optimal compromise solution Multi-period multi-scenario optimization (MPMSO) model

THE UNIVERSITY OF ARIZONA.

EFRI RESIN 762 University of Arizona

Scenario-based Robust Optimization of Regional W/WW Infrastructure

Community growth projection

Reclaimed system (park, school & golf course)
 based on development plan, nodal Q fixed

Design Steps

Step 0 **Developing Scenarios**

Multi-period multi-scenario optimization (MPMSO) model

THE UNIVERSITY OF ARIZONA.

EFRI RESIN

Scenario Optimization

Design Steps

Step 0 Developing Scenarios

Solve a set of single scenario problems

Multi-period single-scenario optimization (MPSSO) model

Identify common elements

Step II

Step III Determine optimal compromise solution Multi-period multi-scenario optimization (MPMSO) model

THE UNIVERSITY OF ARIZONA.

EFRI RESIN 74e Mainerséty of Attigona

Find common elements

EFRI RESIN

Multi-Period Multi-Scenario Optimization - MPMSO

- Original problem has **510** (=225+285) DVs
- By adopting common solutions obtained from MPMSO, no. of DVs drops to 89 (=5+84) (83%↓)

where n = number of decisions at each stage k = number of scenarios addressed s = number of planning stages

EFRI RESIN

Optimal system design at stage 1

Optimal Costs by Scenario Expected cost = \$329.5 M

Cost in \$M	S1	S2	S3	S4	S5	S6	S7
Scenario-optimal cost	285.1	293.6	321.0	332.1	340.7	363.0	371.1
Actual cost	285.7	294.1	323.9	333.2	341.9	363.1	371.2
Regret cost*	0.62	0.53	2.86	1.14	1.16	0.12	0.14

Vulnerability Assessment

- Criticality analysis
- Fail one or more components and examine impact on resilience measure
 - Deficit in ability to deliver water
- Function of
 - Decentralized facility locations
 - Time (increasing demand with constant supply)

Tucson Region

Flow Schematic

EFRI RESIN 74c Maiocraity of Arigona

Core Model

- Network flow model with losses
 - Optimize the flow distribution on a monthly time step minimizing overall distribution and treatment costs
 - WT, WWT, and energy costs
 - Subject to constraints/variable bounds

•
$$f_P(t) = \frac{S_P}{D_P}$$

•
$$f_{NP}(t) = \frac{S_{NP}}{D_{NP}}$$

• Severity_P =
$$\frac{\int_{T_0}^T [1 - f_P(t)]dt}{(T - T_0)}$$

• Severity_{NP} =
$$\frac{\int_{T_0}^T [1 - f_{NP}(t)]dt}{(T - T_0)}$$

 $f_{P} = \text{functionality (potable water)}$ $f_{NP} = \text{functionality (non-potable water)}$ $S_{P} = \text{supplied potable wataer}$ $D_{P} = \text{demand of potable water}$ $S_{NP} = \text{supplied non-potable water}$ $D_{NP} = \text{demand of non-potable water}$ $T - T_{0} = \text{failure duration} = 1 \text{ month}$ $0 \le f_{P}(t) \le 1$ $0 \le Severity_{P} \le 1$ $0 \le Severity_{NP} \le 1$

THE UNIVERSITY OF ARIZONA.

EFRI RESIN

Failure Scenario 7

EFRI RESIN

- Hayden-Udall Water Treatment Plant (HUWTP) failure
- $Severity_P = 0.69$; $Severity_{NP} = 0.81$

RWSS Resilience (Potable Demand)

No SP and IPR

Zone HS

EFRI RESIN

Zone GS

Failure Mode Effects and Criticality Analysis (FMECA)

- Develop means to identify critical elements
- Risk analysis
- Risk Priority Number = Severity x Occurrence

Result of risk assessment with the base RWSS									
Failure	Failure severity		Severity scale value		Occurrence scale	RPN			
mode	Р	NP	Р	NP	value	Р	NP		
1	0.77	0.37	8	3	2	16	6		
2	0.57	0.43	5	4	2	10	8		
3	0.57	0.43	5	4	2	10	8		
4	0.38	0.26	3	2	3	9	6		
5	0.31	0.26	3	2	3	9	6		

