MAJOR IMPLICATIONS OF EFRI-RESIN RESEARCH ON THE CALIFORNIA DELTA FOR

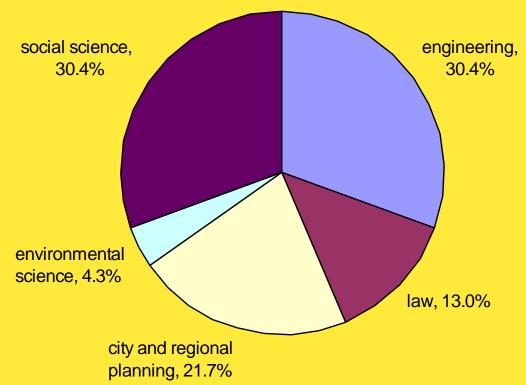
RISK ASSESSMENT & MANAGEMENT (RAM)
OF INTERCONNECTED CRITICAL INFRASTRUCTURES
SYSTEMS (ICIS)

NSF EFRI-RESIN: ASSESSING & MANAGING CASCADING FAILURE VULNERABILITIES OF COMPLEX INFRASTRUCTURE SYSTEMS UNIVERSITY OF CALIFORNIA, BERKELEY

ISU-NSF WORKSHOP ON ENERGY, TRANSPORTATION AND WATER INFRASTRUCTURES: POLICY AND SOCIAL PERSPECTIVES

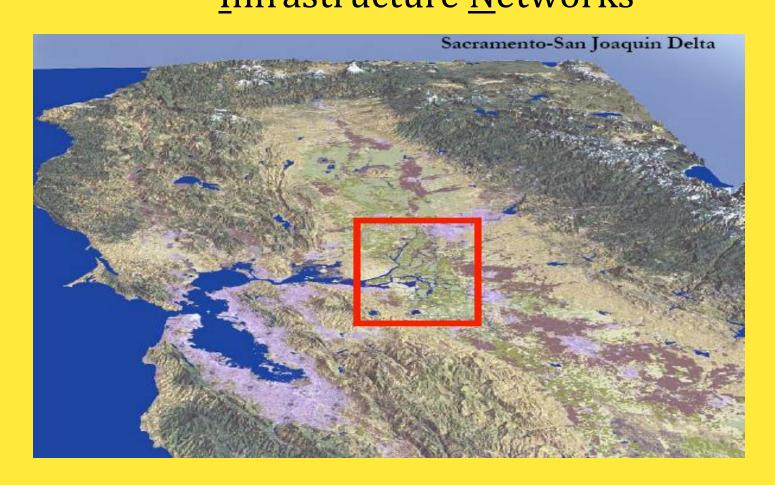
JULY 17-19, 2013

Emery Roe
UCB RESIN Senior Researcher

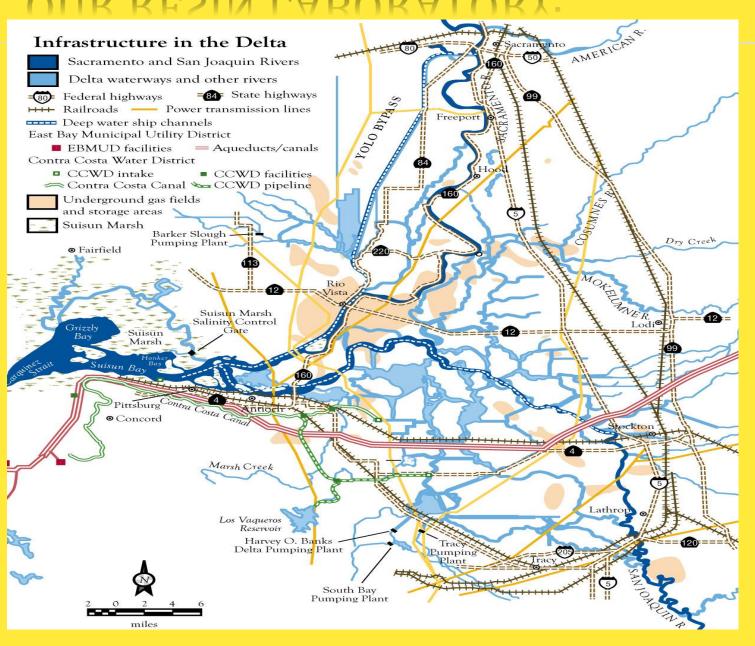

THE AIM OF OUR RESIN IS...

To create, validate, & apply improved Risk Assessment & Management (RAM) approaches for enhanced resilience and sustainability of interconnected critical infrastructure systems (ICIS).

Our RESIN Aim Means Interdisciplinary Research That

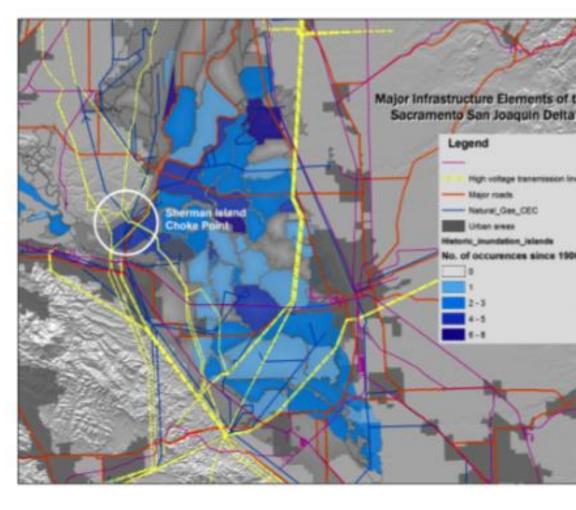

- highlights differing orientations to risk, resilience & system definitions for sustainability
- requires thinking through risk management at different scales in highly engineered, reliable systems before, during & after a disaster

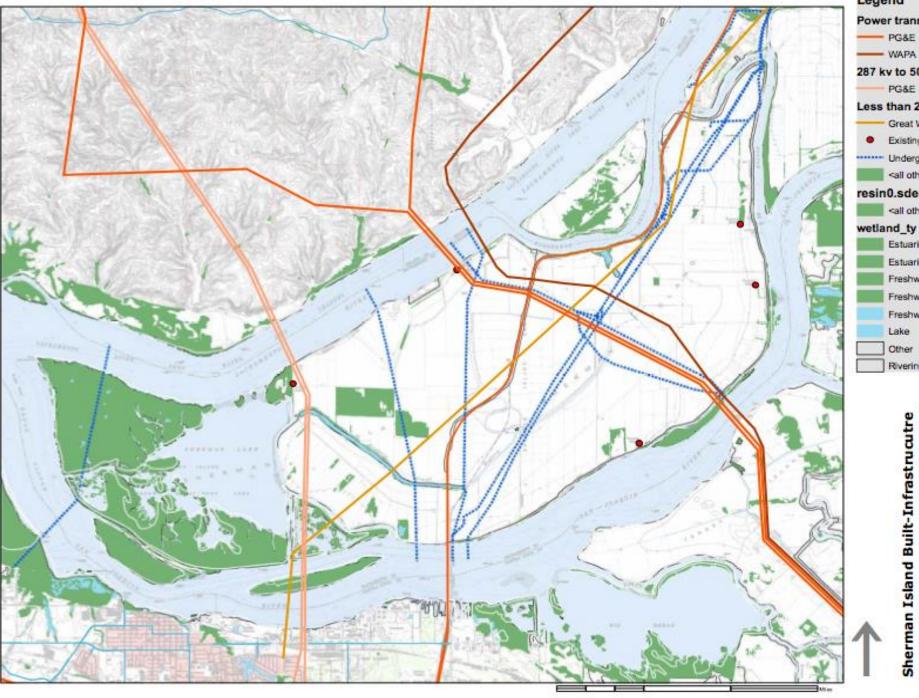
20 researchers5 disciplines



RESIN

<u>Re</u>silient and <u>S</u>ustainable <u>Infrastructure Networks</u>




OUR RESIN LABORATORY:

Identify infrastructure clusters where multiple systems are vulnerable to single events

Legend

Power tranmiss

PG&E

287 ky to 500

PG&E

Less than 287kv

Great Wester

Existing SI po

----- Underground <all other val

resin0.sde.nwi

<all other val

wetland_ty

Estuarine an Estuarine an

Freshwater E

Freshwater F Freshwater F

Lake

Other

Riverine

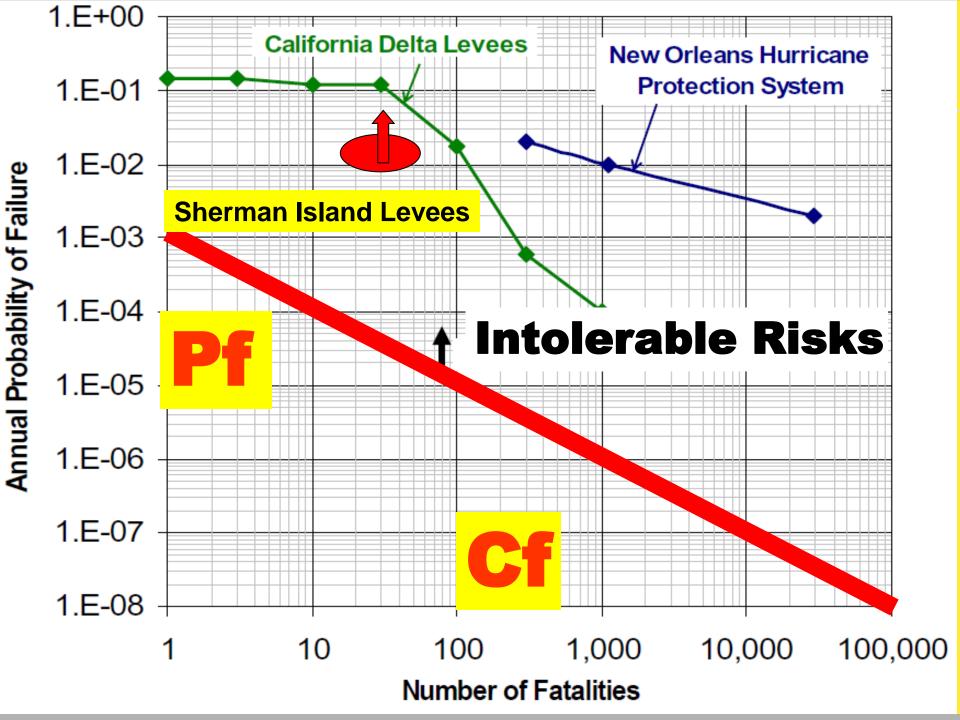
UC Berkeley NSF/RESIN Sherman Island Pilot Project. March 8, 2010 Sherman Island Built-Infrastrucutre

ISU-NSF WORKSHOP: JULY 17-19, 2013

Figure 1 A Cylinder of Spatially Adjacent Infrastructure Elements – Sherman Island **Overhead Power** N Lines Collapse Levees Breach, Hwy160 Floods, Time **Shipping Lanes** Interval Close Major Gaslines Rupture 0 Earthquake Scale Interval Geographical Scale - Sherman Island

Annual Pf

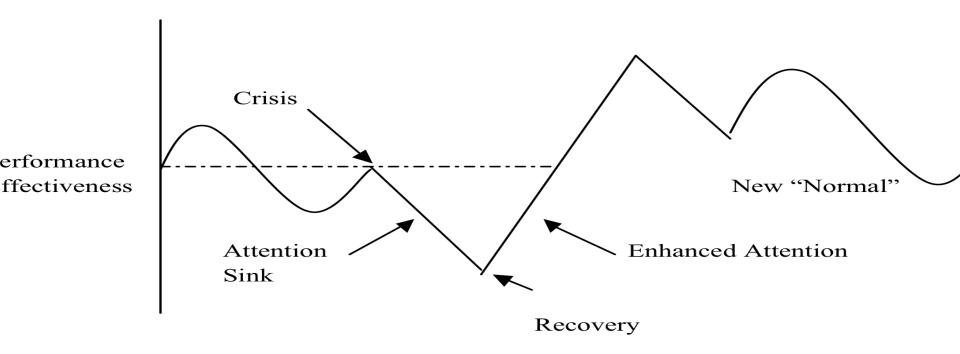
3 failure modes Sherman Island 2010


(Slope stability methods are Bishop and Spencer)

Failure Probabilities	P _{f, Seepage}	P _{f, Overtopping}	P _{f, Slope stability}		
South Side	7.45%	6.60%	3.75% - 23.58% (Deep Failure)		
North Side	7.08%	6.60%	5.05% - 29.01% (shallow Failure)		

>7% Delta Risk Management Strategy [DRMS]

Mean annual probability of levee failure in the Delta Region from the combined risk of earthquakes, high water and dry-weather failures [2005 conditions]


Source: National Science Foundation, # EFRI-0836047

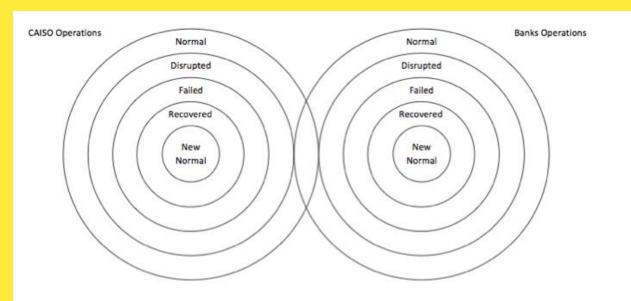
Whole-Cycle Approach to

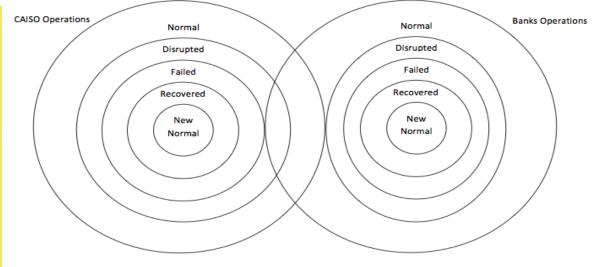
Assessing and Managing Infrastructure Reliability:

Horizontal (infrastructural) and Vertical (interinfrastructural)

CASCADES? (LUIIJF ET AL 2008; VAN EETEN ET AL 2011)

CI Sector	Cascade	Cascade Inc	dependent	Total	Sample	
	initiating	resulting	_		size	
Education	0	3	1	4	4	
Energy	146	76	388	609	590	
Financial services	1	26	33	60	60	
Food	0	4	3	8	8	
Government	2	40	26	68	67	
Health	1	16	22	39	39	
Industry	5	15	7	27	27	
Internet	15	51	95	161	160	
Postal Services	1	0	0	1	1	
Telecommunications	69	125	114	308	295	
Transport	19	128	276	423	422	
Water	9	18	51	78	76	
Total	268	501	1017	1786	1749	


Table 1. Categorisation of number of CI disruption events (number of events).


TABLE 4 Ca	scading events	summed by	affected in	afrastructure
------------	----------------	-----------	-------------	---------------

	Initiating sector									
Affected sector	% Energy	% Financial Services	% Government	% Health	% Industry	% Internet	% Telecom	% Transport	% Water	% TOTAL
Education & research									100	100
Energy	100						0			100
Financial services	27	9				9	55			100
Food	67				33					100
Government	26		5	5		11	47	5		100
Health	50			25			13		13	100
Industry	83								17	100
Internet	15					25	60			100
Telecommunications	48						52			100
Transport	67				2		14	14	2	100
Water	80								20	100
TOTAL	46.6	0.5	0.5	1.4	0.9	7.2	37.1	3.2	2.7	100

Note: figures in italics are referenced in the main text.

Overlapping Stages of Infrastructure Operations

ISU-NSF Workshop: July 17-19, 2013

THE GOOD NEWS:

While determination of System Pfs and Cfs is difficult (and by extension difficult for Intersystem Pf and Cf), it can be done and produce potentially useful information for decisionmakers.

THE BAD NEWS:

The primary challenge, however, is to engage decisionmakers (industry, government, affected public) in constructive collaborations to make decisions that promote resilience and sustainability in the sense we have come to define the terms.

The experience thus far shows strong tendencies by decisionmakers (broadly writ again) to preserve the status quo—not just in the public and private sectors responsible for infrastructures, but also methodologically with RAM methods that may well have not been fully validated.

Moreover, current engineering education and professional requirements do not adequately promote realistic assessment of the critically important system resilience and sustainability Pfs and Cfs. Nor do they adequately address 'human and organizational factors' and their requirements for 'acceptable' resilience, sustainability, and reliability.