Resilient and Sustainable Interdependent Electric Power and Communications Systems

Lamine Mili
Bradley Electrical and Computer Engineering Department
Virginia Tech, Northern Virginia Center
Falls Church, VA 22043, USA
Virginia Tech/Johns Hopkins/Univ. of Arizona /Fed. Univ. of Itajuba Team

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Prof. Lamine Mili</td>
<td>Virginia Tech, VA</td>
</tr>
<tr>
<td>Co-PI</td>
<td>Prof. Ben Hobbs</td>
<td>Johns Hopkins, MA</td>
</tr>
<tr>
<td></td>
<td>Prof. Sandeep Shukla</td>
<td>Virginia Tech, VA</td>
</tr>
<tr>
<td></td>
<td>Prof. Michael von Spakovsky</td>
<td>Virginia Tech, VA</td>
</tr>
<tr>
<td></td>
<td>Prof. Arnie Urken</td>
<td>University of Arizona, AZ</td>
</tr>
<tr>
<td>Participants</td>
<td>Prof. Jim Thorp</td>
<td>Virginia Tech, VA</td>
</tr>
<tr>
<td></td>
<td>Prof. Arun Phadke</td>
<td>Virginia Tech, VA</td>
</tr>
<tr>
<td></td>
<td>Prof. Robson Pires</td>
<td>Federal University of Itajuba, Brazil</td>
</tr>
</tbody>
</table>
9 PhD Student Investigators

- Hua Lin Virginia Tech, PhD. 2012
- Quan Chen Virginia Tech, Ph.D. 2013
- Srivats Shukla Virginia Tech, Ph.D. 2014
- Ibrahima Diagne Virginia Tech, Ph.D. 2013
- Sergio Cano-Andrade Virginia Tech, Ph.D. 2013
- Alejandro Fuentes Virginia Tech, Ph.D. 2014
- Scott Hopkins Virginia Tech, M.S. 2013
- Chiara Lo Prete Johns Hopkins, Ph.D. 2012
- Anya Castillo Johns Hopkins, PhD. 2014
Project Objectives

• Develop a risk management approach to optimally placing resources across interdependent electric power and communications infrastructures to mitigate cascading failures.

• Develop distributed multi-agent schemes to control a host of microgrids that are operated by businesses interacting in vibrant retail markets providing incentives for energy savings and survivability.

• Develop the theoretical foundations of a two-level Sustainability Assessment Framework (SAF) that makes use of indicators based on resilience, sustainability, social and economical indicators.
• **Robustness** to a class of disturbances is defined as the ability of a system to maintain its function (normal state) when it is subject to disturbances of this class.

• **Resilience** to a class of *unexpected* failures is defined as the ability of a system to gracefully degrade and to quickly **self-recover** to a normal state.
Resilience is achieved via system segmentation, distributed control actions, and demand response to frequency.
Resilience Metrics

• Utility Grid’s Resilience Metrics
 o Fraction of power that responds to frequency changes and that contributes to the stabilization of a system
 o Fraction of load and storage devices that can be used as dynamic breaks.
 o Ratio of the recovery times (or costs) of a system with and without microgrids or HVDC links.

• End Users’ Resilience Metrics
 o Fraction of energy supplied by local generation and storage during a utility outage at the end users.
 o Ratio of outage costs at the end user with and without microgrids.
 o Ratio of outage time at the end user with and without microgrids.
Two communications methods:
- Supervisory (master-slave)
- Ad-hoc (peer to peer)
The IEEE reliability test system has 9 different types of 32 generating units ranging from 12MW to 400MW.

Importance sampling halves the computing time while maintaining the same accuracy obtained with the conventional reliability method.
<table>
<thead>
<tr>
<th></th>
<th>Conventional System</th>
<th>Microgrid-embedded System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Energy-Not-Served (MWh)</td>
<td>88.97</td>
<td>52.93</td>
</tr>
<tr>
<td>Energy input from system (MWh/y)</td>
<td>53673.95</td>
<td>11674.49</td>
</tr>
<tr>
<td>Reserve energy to system (MWh/y)</td>
<td>33686.05</td>
<td>78105.25</td>
</tr>
<tr>
<td>Number of cascading failures over 100 simulation years</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Cascading failure in routing networks due to hold time misconfiguration.
Research in Risk Management

• Improve the computational efficiency and scalability of the co-simulation package, GECO, to large-scale systems.

• Investigate various modes of cascading failures in computer networks.

• Develop methods that evaluate the risk of catastrophic failure of large-scale interdependent power and computer networks.
Multiagent System for Microgrid Control

Retail Market

Multiagent system performing a distributed control

Communication Network
Decentralized and Sequential Decision
by Srivats Shukla, A. Urken, L. Mili

- Data arrives asynchronously in multiple steps.
- At every step, the decision is updated.
Reliable Decision in Minimum Time

• As compared to simple majority, weighted decision fusion provides
 - reduced expected decision making time
 - reduced probability of ties

![Graph showing expected decision making time and probability of ties with and without weighting.](image)
Research in Control of Microgrids

- Application of multi-hypothesis testing for power system state identification

- Analysis of robustness of tests to missing and contaminated data

- Multi-hypothesis testing for Condorcet and Borda Decision Fusion
Mitigating Hurricanes’ Impacts

• Following hurricanes, microgrids can provide electric energy to customers in an islanding mode for several weeks.

• A cost-benefit analysis is being carried out in a case study in Florida that integrates energy, transportation, water, and communications infrastructures.
Opportunity: MGs may be able to provide black-start, voltage support, and energy locally to support restoration during regional outages due to hurricanes.

Research Goal: Determine if MGs can yield:
- Restoration time improvement both to its consumers and the grid;
- Economic benefits from MG to non-MG energy suppliers and consumers within a RTO.
Test System Specifications

- Characteristics of generating units, critical loads, black-start units, system load profile, islanding configurations.
- Flexibility to incorporating alternative MG configurations.
- Generic MG components:
 1. low-voltage network
 2. controllable & non-controllable sources
 3. storage
 4. communication & monitoring infrastructure;
 5. control sources, loads, interconnected modes
Simulation Outcomes

Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Damaged Units</th>
<th>Damaged Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event A</td>
<td>Black Start at Node 0</td>
<td>(0,1), (0,3), (0,4)</td>
</tr>
<tr>
<td>Event B</td>
<td>Non Black Start at Node 1</td>
<td>(0,1), (1,2), (1,3), (1,4), (1,5)</td>
</tr>
<tr>
<td>Event C</td>
<td>Non Black Start at Node 2</td>
<td>(1,2), (2,4), (2,5)</td>
</tr>
</tbody>
</table>

Assume: 20 minute restoration time for individual generators and lines
Total capacity = 210 MW

MG Fraction of Capacity

- **Event A**
 - 5% MG: 31 minutes
 - 15% MG: 37%
 - 25% MG: 45%
 - 35% MG: 51%
- **Event B**
 - 5% MG: 15 minutes
 - 15% MG: 55%
 - 25% MG: 61%
 - 35% MG: 67%
- **Event C**
 - 5% MG: 13 minutes
 - 15% MG: 63%
 - 25% MG: 68%
 - 35% MG: 72%
- **Overall**
 - 5% MG: 20 minutes
 - 15% MG: 52%
 - 25% MG: 58%
 - 35% MG: 63%
Sustainable Assessment Framework (SAF)

ECONOMIC ASPECTS

ENVIRONMENTAL ASPECTS

SOCIAL ASPECTS

TECHNOLOGICAL ASPECTS

UPPER LEVEL SAF

Multiobjective Optimization and MCDM

LOWER LEVEL SAF

Exergoenvironomic Optimization

GLOBAL SUSTAINABILITY/RESILIENCY INDEX

OPTIMUM SUSTAINABLE/RESILIENT POWER NETWORK

EXERGOENVIRONOMIC INDEX

MONETARY COSTS

EMISSIONS

THERMODYNAMICS

OPTIMUM SYNTHESIS/DESIGN/OPERATION OF A POWER NETWORK

(Type and size of technologies)

OPTIMUM DESIGN/OPERATION OF MICROGRIDS

(Part load efficiency, emissions)
Lower Level: Exergo-economic-environmental Analysis

Cost of components

Exergy Analysis

Exergy is the rational basis for assigning

Monetary cost by inefficiencies

Economic Analysis

Pollution Analysis

Measure of pollution rejected to the environment

Monetary cost impacts by pollution

Component-related environmental impacts

Enviromental Analysis

Enviro-exergo-economic Analysis
Upper Level SAF: Model of The Netherlands

Scenario 1

Grid (%):
- Natural Gas, 58.56
- Coal, 24.26
- Waste, 13.88
- Oil, 0.1
- Hydro, 0.34
- Nuclear, 2.87

MGs (%):
- Natural Gas, 43.49
- Oil, 10.51
- Coal, 40.24

Scenario 2

MG Capacities:
- 20 MW Residential
- 110 MW Commercial
- 200 MW Industrial

6 Residential
2 Commercial
1 Industrial

5 Residential
2 Commercial
3 Industrial

Node 1

Node 2

Node 3

Res. MGs

Com. MGs

Ind. MGs
Upper Level SAF: Some Conclusions

- Fuzzy Logic and Decision-Maker Weighting techniques point to the same optimum power network configuration for both the system with and without MGs.

- Coal, nuclear, hydro, and waste fueled generating units are base and intermediate units, while natural gas units are peaking units.

- **Main conclusions:**
 - MGs leads to a better overall efficiency, a reduction in monetary costs, and an improved network resiliency.
 - Total life SO$_2$ emissions may not be improved with the inclusion of MGs.
Proposed by Frangopoulos et al., 2010

\[
\bar{I}_{ij} = \begin{cases}
0 & \text{if } I_{ij} \leq a_{ij} \\
\frac{I_{ij} - a_{ij}}{b_{ij} - a_{ij}} & \text{if } a_{ij} < I_{ij} < b_{ij} \\
1 & \text{if } I_{ij} \geq b_{ij}
\end{cases}
\]

Indicators of positive SD

\[
\bar{I}_{ij} = \begin{cases}
1 & \text{if } I_{ij} \leq a_{ij} \\
\frac{b_{ij} - I_{ij}}{b_{ij} - a_{ij}} & \text{if } a_{ij} < I_{ij} < b_{ij} \\
0 & \text{if } I_{ij} \geq b_{ij}
\end{cases}
\]

Indicators of negative SD

\[
\bar{I}_{sj} = \sum_i w_i \bar{I}_{ij} \quad \sum_i w_i = 1, \quad w_i \geq 0
\]

Sustainability Sub-index of group \(j \), and relative weight of indicator \(i \) in group \(j \)

\[
I_{cs} = \sum_i w_j \bar{I}_{sj} \quad \sum_j w_j = 1, \quad w_j \geq 0
\]

Composite sustainability index and relative weight of the indicator in group \(j \).
What We Need to Know?

• Combining data from various sources
 o Survey/opinion data from households
 o Grid data from energy providers

• Understanding environmental concerns, which are multifaceted:
 o Energy use
 o Pollution of water and air

Challenges: The Road Ahead

• Analyzing heterogeneity
 o Variation within neighborhoods and households

• Understanding the importance of social organization
 o Policy creation and implementation
Consumer Behavior Patterns

- Collect Smart Grid information from social media (Twitter, Facebook).
- Develop methods that will provide rapid data desaggregation with good accuracy.
- Conduct correlation analysis between consumption patterns, customer preferences, and weather patterns.
- Develop visualization methods that reveal patterns of customer energy consumption.
- Extract patterns revealing customers’ choices.
Regulatory Barriers to Microgrid Deployment

• Public utility commission (PUC) regulations may prohibit microgrids from crossing public rights-of-ways. Approval from local municipalities may be imposed.

• Utilities may impose onerous interconnection requirements under the pretext of protecting the reliability of the utility grid.

• Microgrids are not mentioned in net metering provision and therefore, are not eligible for such service.

• PUCs can play a key role in facilitating microgrid development. This will require an engineering expertise from PUC to address the reliability issue.